

JPND Symposium November 27th – 28th , 2024 Royal Museums of Fine Arts of Belgium, Brussels

SCAIFIELD a multi-center 7T study on Ataxia

Tony Stöcker DZNE Bonn

Outline

Spinocerebellar ataxias (SCA)

- The SCAIFIELD project
- <u>Whole</u>-brain qMRI at 7T
- Initial Results
- Summary and outlook

- SCA: most common autosomal dominantly inherited progressive ataxia disorders worldwide
- First gene-therapies with a gene silencing approach have started. They might be preventive.
- Early (imaging) biomarkers would enable trials in the pre-ataxic stage!

The SCAIFIELD project

Goal: Develop <u>quantitative MRI</u> methods for <u>whole-brain</u> imaging at <u>ultra-high field (</u>7T) and apply the novel technology in a <u>multi-center study</u> on <u>spinocerebellar ataxia</u> (SCA) patients

Challenge: Cerebellum imaging at 7T

Pls

Tony Stöcker, DZNE, Bonn, Germany (Coordinator) Pal Erik Goa, NTNU, Trondheim, Norway Pierre Maquet, GIGA, Liège University, Belgium Thomas Klockgether, DZNE, Bonn, Germany Ergin Atalar, Bilkent University, Ankara, Turkey

Advisory Board

Gülin Öz, CMRR, University of Minnesota, Minneapolis Robin Heidemann, UHF Group, Siemens Healthineers Cathalijne van Doorne and Julie Greenfield, Euro-Ataxia

PPI activities

- (i) Incorporate patient perspective in study design
- (ii) Providing easy-to-read information about research outcomes
- (iii) Explain possibilities to participate in clinical enrolment

The SCAIFIELD project

I. Method development: UHF-Neuroimaging including cerebellum and brainstem

Ataxia Imaging @ $7T \Rightarrow$ mitigating B1 inhomogeneity (transmit field)

... without lengthy subjectspecific calibration !

Universal Pulses¹

- pTx pulses, which homogenize B1 for data base of subjects
- UPs generalize, i.e. they also perform on new subjects

¹ Gras et al, MRM 2017

parallel transmission (pTx)

Acquire B1 maps per channel Acquire B0 map Calculate X RF pulses $(\Sigma \approx 5 \cdot 10 \text{ min})$ Apply pulses in sequence

SCAIFIELD method development: rapid whole-brain 7 Tesla MRI

Custom sequences with tailored Universal Pulses (UPs) and ultra-fast imaging readouts

- UP calculation ^{1,2,3,4} with BLT database (Bonn-Liège-Trondheim field-map database collection > 70 subjects)
- Fast readouts ^{5,6,7,8} combining 2D parallel imaging, partial Fourier, elliptical sampling, EPI factor, and compressed sensing

¹ Löwen et al, *MRM* 2022, 8(86): 2564–72; ² Gras et al,, MRM 2018, 80:53–65,; ³ Gras, et al, MRM 2019, 81(5): 3202–8; ⁴ Löwen et al, MRM, 2024. ⁵ Brenner et al, *Magma* 2014, 27(5):455–62. ⁶ Pracht et al, MRM 2018, 79(5): 2620–28; ⁷ Stirnberg and Stöcker, MRM 2022, 85:1540-1551; ⁸ Stirnberg et al, MRM 2024

SCAIFIELD method development: rapid whole-brain 7 Tesla MRI

Custom sequences with tailored Universal Pulses (UPs) and ultra-fast imaging readouts

- UP calculation ^{1,2,3,4} with BLT database (Bonn-Liège-Trondheim field-map database collection > 70 subjects)
- Fast readouts ^{5,6,7,8} combining 2D parallel imaging, partial Fourier, elliptical sampling, EPI factor, and compressed sensing

Custom sequences:

- $pTx \Rightarrow$ homogenous whole-brain MRI
- UPs \Rightarrow calibration-free and robust
- Advanced readouts \Rightarrow high SNR/CNR
- MP-RAGE, 3D TSE, 3D FLAIR

<

 \checkmark

¹ Löwen et al, *MRM* 2022, 8(86): 2564–72; ² Gras et al,, MRM 2018, 80:53–65,; ³ Gras, et al, MRM 2019, 81(5): 3202–8; ⁴ Löwen et al, MRM, 2024.

⁵ Brenner et al, *Magma* 2014, 27(5):455–62. ⁶ Pracht et al, MRM 2018, 79(5): 2620–28; ⁷ Stirnberg and Stöcker, MRM 2022, 85:1540-1551; ⁸ Stirnberg et al, MRM 2024

rapid quantitative and molecular whole-brain MRI @ 7T

Chemical Exchange Saturation Transfer¹ (CEST) - 1.6 mm iso

Multi-Parametric Mapping² (MPM) - 0.6 mm iso

¹ Völzke et al. "PUSHUP-CEST: Calibration-free whole-brain ultra-high field CEST imaging using universal parallel transmission ", MRM 2024
² Wang, Ehses, Stöcker, Stirnberg. "Reproducibility of Rapid MPM at 3T and 7T with Highly Segmented and Accelerated 3D-EPI." MRM 2022 88(5): 2217–32.

SCAIFIELD: 7T-qMRI Acquisition Protocol

#	Contrast (Method)	Resolution / mm ³	Coverage	Duration / min	Quantitative Analysis	Hypothesis
1	B0 & B1 map (3DREAM)	5.0 x 5.0 x 5.0	whole brain	02:38	Calibration: flip angle maps and field maps	$(\rightarrow qMRI analysis)$
2	MPRAGE	0.6 x 0.6 x 0.6	whole brain	07:24	segmentation / volumetry	volume loss ¹
3	MPM + QSM (segm. 3D-EPI)	0.6 x 0.6 x 0.6	whole brain	13:41	T1, T2*, PD, MT,QSM / volumetry	T1, T2* reduction ² (PD,MT?) / volume loss / iron load ²
4	CEST (segm. 3D-EPI)	1.6 x 1.6 x 1.6	whole brain	07:37	Amides, NOE (?)	decreased?
5	DWI (SMS-SE-EPI, 2-shell HARDI)	1.5 x 1.5 x 1.5	whole brain	10:44	Microstructure & connectivity: e.g. DTI, NODDI, tractography	reduced connectivity / cerebellar demyelination ^{3,4}
6	MRSI (3D-CRT)	5.0 x 5.0 x 5.0	cerebellum	08:56	Neurochemical profile: Cr, Glu, Gln, NAA,	MRS Score: SCA classification ⁵

≈ 52 min

Reetz K et al., *Brain* 136, no. 3 (2013)
Deistung A et al., *Brain Comm.* 4, 2022
Mascalchi M, et al. PLoS One (2018)

4. Piccinin CC, et al. Mov Disord. (2020)

5. Joers JM et al., Annals Neurology 83, (2018)

Example Patient Data

DZNE

Example Patient Data

Diffusion: brain microstructure (1.5 mm iso)

<u>DTI</u>

FA: Fractional anisotropyMD: Mean diffusivityRD: Radial diffusivityAD: Axial diffusivity

<u>NODDI</u>

ICVF: Intracellular Volume Fraction

ISOVF: Isotropic Volume Fraction

OD: Orientation Dispersion

1.00

0.75

0.50

0.25

0.00

Tissue parameter mapping: molecular information

Multi-Parametric Mapping (MPM) - 0.6 mm iso

Chemical Exchange Saturation Transfer (CEST) - 1.6 mm iso

HC

SCAIFIELD: summary and next steps

SCAIFIELD Achievements

- Fast sequences for homogeneous whole-brain quantitative MRI at 7T with high resolution and image quality
- Tailored analysis pipelines with focus on cerebellum for brain segmentation, MPM, QSM, CEST, DWI, CSI
- Sequence role out at all SCAIFIELD sites (Bonn, Liège, Trondheim, Essen) / patient scanning started Q3 2024

Next steps

- Ataxia patient study is ongoing and will finish in Q2 2025
- Automated global analysis pipeline and group analyses
- Backtranslation to 3T
- qMRI as early imaging biomarker for Ataxia (\Rightarrow in future, therapy monitoring in pre-ataxic stage?)

Impact beyond the project

- Imaging protocol ready for clinical research, paving the way for increased routine use of 7T MRI
- Sequences will be made freely available in Q1 2025 (for Siemens 7T Terra and 7T Plus, WIP: Terra.X)

Acknowledgements

SCAIFIELD Team

Bonn

Clinical Science Jennifer Faber Monica Ferrera Thomas Klockgether

MR Physics Yannik Völzke Daniel Löwen Eberhard Pracht Rüdiger Stirnberg Philipp Ehses Tony Stöcker

Project Management Ruth Hossinger

Collaborators

Nicolas Boulant, Vincent Gras, Frank Mauconduit Christian Langkammer, Stefan Ropele Simon Robinson, Wolfgang Bogner Moritz Zaiss

Christoph Phillips Laurent Lamalle Gilles Vandewalle Pierre Maquet

Ankara Einaz Mahmoodi Ergin Atalar

Trondheim

Titto Idulca

Pål Erik Goa

Liège

Marc-Antoine Fortin

Neurospin Graz Vienna Erlangen

Thank You

DJPND research

Federal Ministry of Education and Research

