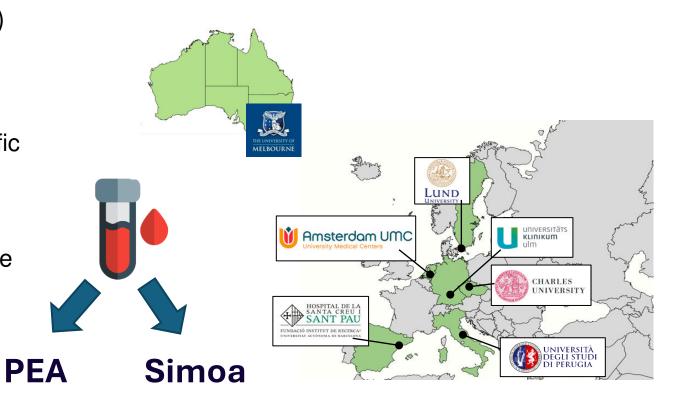


THE bPRIDE PROJECT

blood Proteins for early Discrimination of dEmentias


PI: Prof Charlotte Teunissen, Amsterdam UMC (NL)

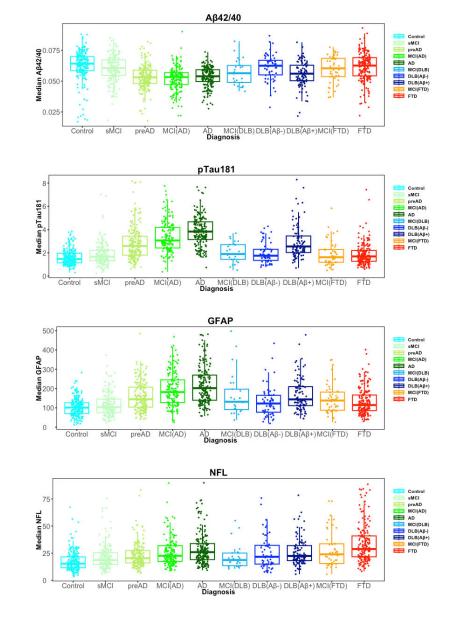
Co-PI: Dr. Marta Del Campo, Barcelonaßeta (SP)

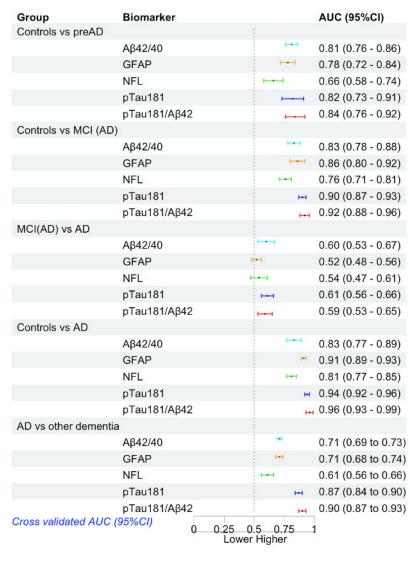
Presenter: Dr. Giovanni Bellomo, University of Perugia (IT)

Aims:

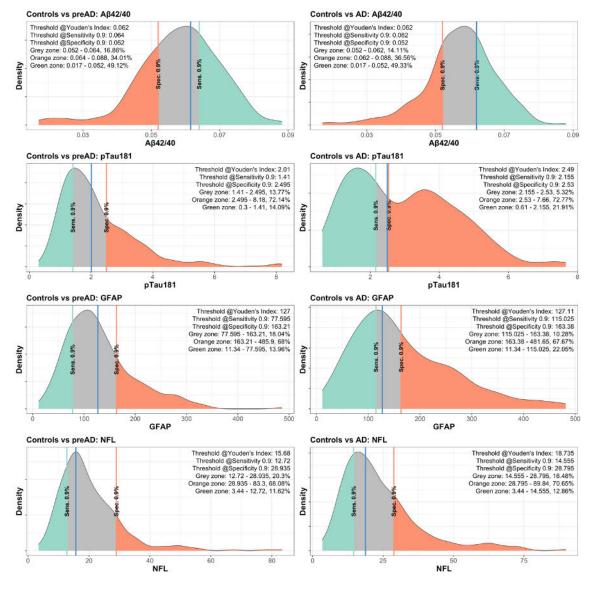
- ☐ Generate and validate blood tests for early, specific diagnosis of AD, LBD, and FTD.
- ☐ Use novel technologies to analyze >1000 blood proteins across >1000 patients at different disease stages.

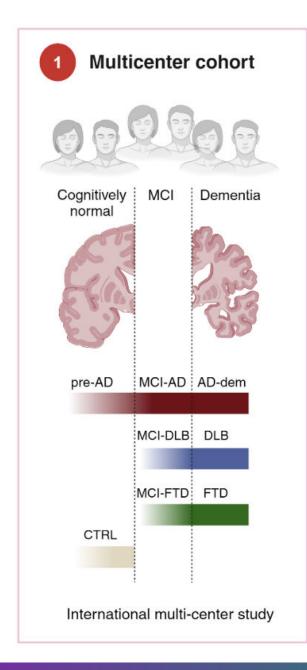
bPRIDE multicentre cohort

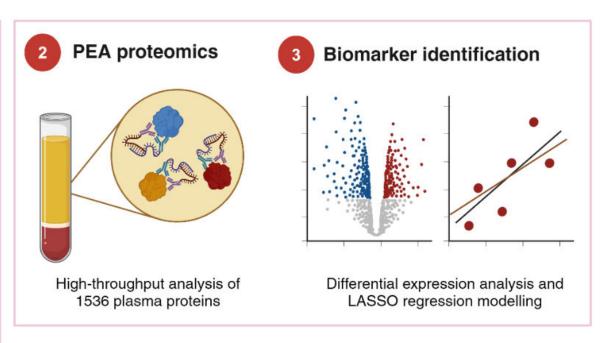

Group	subgroup	N	Age (y)	% Males	Edu (y)	MMSE	Aβ pos. (%)
CTDI	SCD	362	70±8	37%	12±6	29±2	0%
CTRL	sMCI	154	69±13	50%	11±6	27±3	0%
	preAD	183	72±9	33%	12±6	29±2	100%
AD	MCI-AD	157	72±8	43%	11±6	26±3	100%
	AD-dem	175	72±10	38%	10±8	21±6	100%
LDD	MCI-DLB	25	72±9	60%	7±2	26,5±3	47%
LBD	DLB	167	72±8	70%	6±3	23±6	49%
FTD	MCI-FTD	45	68±8	64%	9±5	26±3	15%
	FTD-dem	163	68±13	57%	11±7	24±8	5%



SIMOA-based biomarkers of AD


Diagnostic performance of plasma Aβ42/40 ratio, pTau181, GFAP, and NFL along the continuum of Alzheimer's disease and non-AD dementias

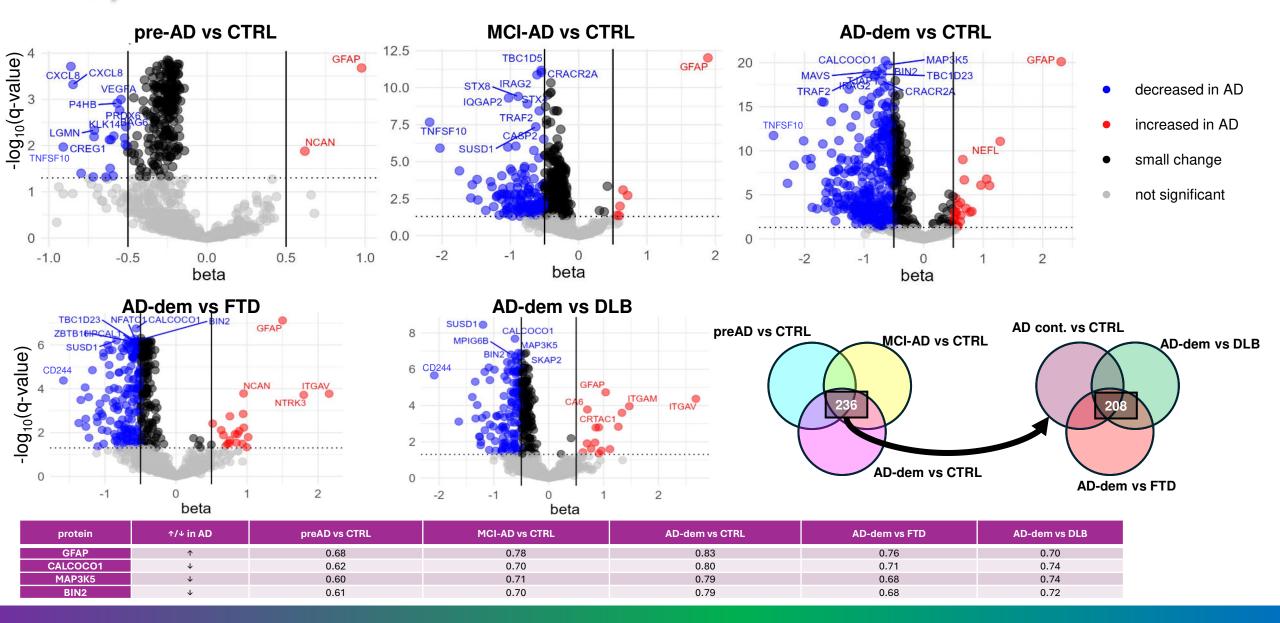

James D. Doecke et al. manuscript in revision Alz & Dem



External validation

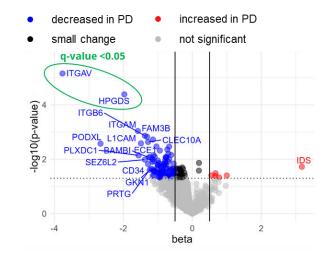
		AUC (95%CI)			
Group	Biomarker	UNIPG*¹	ALFA+1	BIODEGMAR ¹	
Controls vs preAD	Αβ42/40	0.83 (0.69 - 0.97)	0.6 (0.55 - 0.64)	0.65 (0.59 - 0.71)	
	pTau181	0.6 (0.41 - 0.78)	0.64 (0.59 - 0.69)	0.71 (0.64 - 0.78)	
	GFAP	0.73 (0.57 - 0.9)	0.64 (0.59 - 0.69)	0.74 (0.67 - 0.81)	
	NFL	0.67 (0.49 - 0.84)	0.57 (0.53 - 0.62)	0.57 (0.52 - 0.62)	
Controls vs MCI(AD)	Αβ42/40	0.61 (0.46 - 0.75)		0.73 (0.66 - 0.8)	
	pTau181	0.79 (0.66 - 0.93)		0.74 (0.66 - 0.81)	
	GFAP	0.77 (0.63 - 0.91)		0.75 (0.68 - 0.82)	
	NFL	0.68 (0.53 - 0.83)		0.58 (0.52 - 0.64)	
Controls vs AD	Αβ42/40	0.76 (0.6 - 0.92)		0.65 (0.59 - 0.71)	
	pTau181	0.86 (0.72 - 0.99)		0.72 (0.64 - 0.79)	
	GFAP	0.86 (0.73 - 0.98)		0.74 (0.67 - 0.81)	
	NFL	0.82 (0.68 - 0.96)		0.58 (0.52 - 0.64)	

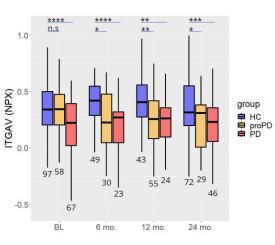
- ☐ pTau181 best marker for AD continuum vs controls and FTD but not for AD/DLB due to AD co-pathology in DLB.
- ☐ Combinations with Ab42/40 and GFAP improve performance
- ☐ Need of centre-specific thresholds



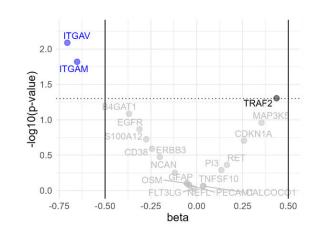
Looking for biomarkers for the differential diagnosis and molecular staging of neurodegenerative diseases leading to dementia by proximity-extension assay proteomics

(Manuscript in preparation)

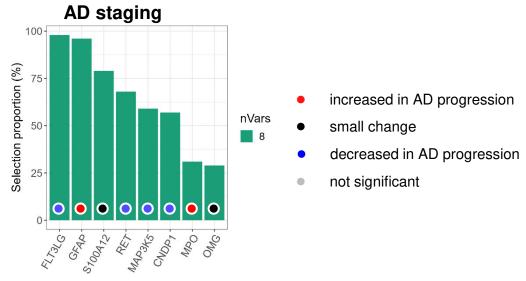

Most specific biomarkers for AD


increased in DLB/FTD decreased in DLB/FTD • small change not significant FTD vs CTRL **DLB vs CTRL** 12 **ITGAV** -log₁₀(q-value) NEFL ITGAM 15 ITGAV 10 beta beta DLB vs AD-dem FTD vs AD-dem 23 Top-4 specific Top-4 specific markers by AUC for DLB vs CTRL & DLB vs AD-dem markers by AUC for FTD vs CTRL & FTD vs AD-dem PI3 **ITGAV** ITGB2 NTRK3 **ITGAM NEFL ITGAV** NCAN -1.5 0.5 Cohen's d Cohen's d DLB vs AD-dem DLB vs CTRL FTD vs AD-dem FTD vs CTRL

Most specific biomarkers for DLB and FTD

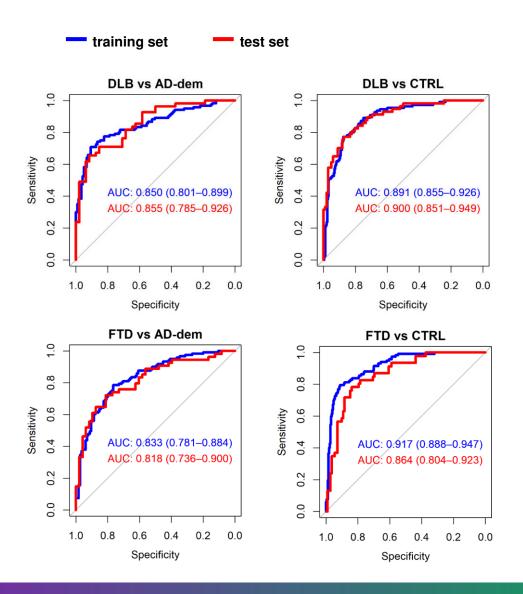


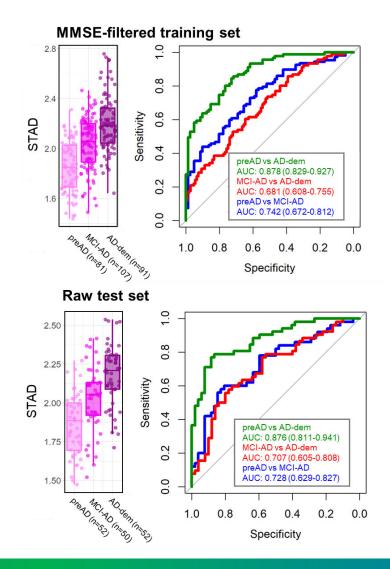
PPMI: ITGAV longitudinal change


VARS: AD w/ LBD vs AD w/o LBD

- decreased in AD w/ LBD
- not significant
- small change

Variable selection


Database splitting 70/30% (training/test)
100-fold CV LASSO regression
in training set
selection of top-5 proteins by selection proportion
in 5-variable models + proteins highlighted in univ.
analysis and 2 proteins for MCI-FTD vs CTRL



Assay name	Uniprot	OID	Olink Explore panel	Standard plasma dilution in Explo
1	PI3	P19957	OID20326	Cardiometabolic
2	FLT3LG	P49771	OID20661	Inflammation
3	OSM	P13725	OID20574	Inflammation
4	NEFL	P07196	OID20871	Neurology
5	B4GAT1	O43505	OID21127	Neurology
6	ITGAM	P11215	OID21071	Neurology
7	CD38	P28907	OID21316	Oncology
8	ITGAV	P06756	OID21416	Oncology
9	GFAP	P14136	OID21247	Oncology
10	MAP3K5	Q99683	OID21253	Oncology
11	CALCOCO1	Q9P1Z2	OID21387	Oncology
12	ERBB3	P21860	OID20705	Inflammation
13	NCAN	O14594	OID21055	Neurology
14	PECAM1	P16284	OID21131	Neurology
15	TNFSF10	P50591	OID20611	Inflammation
16	RET	P07949	OID21346	Oncology
17	NTRK3	Q16288	OID21057	Neurology
18	EGFR	P00533	OID20319	Cardiometabolic
19	TRAF2	Q12933	OID20507	Inflammation
20	CDKN1A	P38936	OID21319	Oncology
21	S100A12	P80511	OID21374	Oncology
	-			parts.

Top proteins by selection proportion

bPRIDE models

Summary PEA data

- 1. Among more than 1400 markers analysed by Olink, GFAP exhibit the best performance in differentiating AD from CTRL.
- 2. Although PEA markers do not outperform Simoa ones for AD vs CTRL, they may allow differential diagnosis vs DLB and FTD
- 3. We made a robust selection of 21 markers to be included in a custom panel for AD differential diagnosis, DLB and FTD identification, and AD staging
- 4. DLB-associated markers show associations to neuropathology and work also for PD
- 5. The models derived from the panel perform well in internal training and test sets

Thank you!

NL, Dept of Clinical Chemistry

Charlotte Teunissen Lisa Vermunt Yanaika Hok-A-Hin Isabel M Houtkamp Lynn Boonkamp Sjors in ' t Veld Iris Hanskamp

Alzheimer Center, VUmc

Wiesje van der Flier Yolande Pijnenburg Afina Lemstra Pieter Jelle Visser Betty Tijms Philip Scheltens

Barcelonaβeta

Marta del Campo

Sant Pau Memory unit

Alberto Lleó Daniel Alcolea

Lund University

Oskar Hansson Niklas Mattsson

UNIVERSITÀ DEGLI STUDI DI PERUGIA

Perugia University

Lucilla Parnetti Lorenzo Gaetani Andrea Toja

University of Melbourne

Colin Master Christopher Fowler

Universidad Politécnica de Madrid

Carlos Quesada

CSIRO

James Doecke

Charles University

Jakub Hortz Kateřina Veverová

University of Ulm

Marcus Otto

Steffen Halbgebauer

